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Abstract
Nonrenormalizable scalar fields, such as ϕ4

n, n � 5, require infinitely many
distinct counterterms when perturbed about the free theory, and lead to free
theories when defined as the continuum limit of a lattice regularized theory
restricted only to arbitrary mass and coupling constant renormalization. Based
on the proposal that functional integrals for interacting nonrenormalizable
models do not reduce to the expression for the free field functional integral
as the coupling constant vanishes—a proposal supported by the fact that even
the set of classical solutions for such models does not reduce to the set of
free field solutions as the coupling constant vanishes—it has been conjectured
that for nonrenormalizable models the interaction term acts partially as a hard
core eliminating certain fields otherwise allowed by the free theory. As a
consequence, interacting models are continuously connected to a pseudofree
theory that takes into account the hard core as the coupling constant vanishes,
and this general view is supported by simple quantum mechanical examples
as well as soluble but nonrelativistic nonrenormalizable models. This paper
proposes a pseudofree model for relativistic nonrenormalizable models about
which it is argued that a perturbation expansion of the interaction is term-by-
term divergence free.

PACS numbers: 11.10.−z, 11.10.Gh, 11.10.Kk

Introduction

Nonrenormalizable quantum field models, such as ϕ4
n, with a spacetime dimension n � 5,

require the introduction of nonclassical (i.e., h̄-dependent), nontrivial (i.e., other than mass or
interaction) counterterms to avoid triviality [1]. A conventional regularized perturbation
analysis introduces additional counterterms designed to cancel divergences as they arise
in the perturbative evaluation of a functional integral about the free theory; but for such
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theories, infinitely many distinct counterterms are needed, and therefore this approach is
unsatisfactory. Instead, our procedure chooses the (unconventional) counterterm in order to
cancel the source of the divergences as already identified within the integrand of a functional
integral. Unconventional counterterms are not out of place since it is highly likely that
interacting nonrenormalizable theories reduce to a pseudofree model different from the free
model as the coupling constant is reduced to zero due to the interaction term partially acting
as a hard core. Indeed, consider the Sobolev-like inequality [2]{ ∫

φ(x)4dnx

}1/2

� C

∫
{[∇φ(x)]2 + m2φ(x)2} dnx, (1)

valid for C = 4/3 for n � 4, while C = ∞ for n � 5, which means in the latter case that
there are fields, e.g., φsingular(x) = |x|−p e−x2

, n/4 � p < n/2 − 1, for which the left side
diverges while the right side is finite. This relation implies that the set of interacting classical
solutions does not reduce to the set of free classical solutions as the coupling constant goes to
zero. Even simpler, the classical action for a single degree of freedom given by

I =
∫ {

1

2
[ẋ(t)2 − x(t)2] − λx(t)−4

}
dt (2)

clearly illustrates the basic principles of a far simpler but analogous hard-core behavior and
associated pseudofree theory [3]; see also [6].

We turn to an analysis of the principal subject of this paper. Initially, we choose an
n-dimensional, periodic, hypercubic, Euclidean spacetime lattice with a lattice spacing a, L

lattice points on each side and lattice points labeled by multi-integers k = (k0, k1, . . . , ks) ∈
Z

n, where s = n − 1 is the spatial dimension and k0 refers to a future time direction. The
lattice-regularized functional integral for the Schwinger function generating functional is given
by

S(h) ≡ M

∫
exp[Z−1/2�khkφka

n/h̄ − In(φ, a,N)/h̄ − C(φ, a, h̄)/h̄]�k dφk

≡ 〈
eZ−1/2�khkφka

n/h̄
〉
, (3)

where {hk} is a suitable smooth sequence, and the normalization factor M ensures that S(0) = 1.
The continuum limit is taken in two steps as follows. (i) The number of lattice sites on an
edge L → ∞ and the lattice spacing a → 0 so that La remains constant and finite. Thus,
the spacetime volume V = (La)n as well as the spatial volume (at fixed Euclidean time)
V ′ = (La)s are both finite. (ii) The final step involves V → ∞ and V ′ → ∞. In this paper,
we focus on just the first step in the continuum limit and assume that both V and V ′ are
sufficiently large. Notationally, we also introduce N = Ln and N ′ = Ls , and note that sums
(and products) such as �k(�k) are over all spacetime while �′

k(�
′
k) are over all space alone

at some fixed k0.
In (3), Z denotes the field strength renormalization factor and In(φ, a,N) is the naive

lattice action:

In(φ, a,N) ≡ 1
2�k�k∗(φk∗ − φk)

2an−2 + 1
2m2

0�kφ
2
k a

n + λ0�kφ
4
k a

n, (4)

where k∗ denotes any one of the n nearest neighbors to k in the positive sense, i.e.
k∗ ∈ {(k0 + 1, k1, . . . , ks), . . . , (k0, k1, . . . , ks + 1)}. Also in (3), the term

C(φ, a, h̄) ≡ 1
2h̄

2�kFk(φ)an (5)

represents the still-to-be-chosen counterterm.
Besides the lattice action, we enlist the help of the associated lattice Hamiltonian as

well as the ground state of that Hamiltonian in our search for a suitable counterterm and
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pseudofree theory. Assuming that the spacetime volume V < ∞, it is clear that full spacetime
averages such as

〈[
�kφ

r
ka

n
]p〉

are finite, for all positive integers r and p, provided that all the
corresponding sharp-time, spatial averages

〈[
�′

kφ
r
ka

s
]p〉

are finite; for a proof, see [4]. In turn,
for a large Euclidean time, the latter expression can be represented as

〈[
�′

kφ
r
ka

s
]p〉 =

∫ [
�′

kφ
r
ka

s
]p

�(φ)2�′
k dφk, (6)

where �(φ) denotes the ground state of the system.
Our interest next turns to an analysis of the putative ground state.

Choice of counterterm

To understand our basic approach, let us first consider the idealized example of a free-theory,
Gaussian ground-state distribution

�G(φ)2 ≡ R e−A�′
kφ

2
k as

, (7)

where A = O(1), and, for integral p � 0, let us focus on the integrals

Ip(A) ≡ R

∫ [
�′

kφ
2
k a

s
]p

e−A�′
kφ

2
k as

�′
k dφk. (8)

Such integrals can be evaluated exactly, but we prefer to study them in an approximate sense by
steepest descent methods. To that end, we introduce hyper-spherical coordinates [5] defined
by

φk ≡ κηk, �′
kφ

2
k = κ2, �′

kη
2
k = 1,

0 � κ < ∞, −1 � ηk � 1, (9)

and it follows that

Ip(A) = 2R

∫
κ2pasp e−Aκ2as

κ(N ′−1) dκδ
(
1 − �′

kη
2
k

)
�′

k dηk. (10)

A steepest descent argument leads to

Ip(A) = O((N ′/A)p)I0(A), (11)

and a perturbation series for I1(A) about I1(1) is given by

I1(A) = I1(1) − �I2(1) + 1
2�2I3(1) − · · · , (12)

where � = A − 1. As N ′ → ∞, such a series has higher order, term-by-term divergences
because the support of the ground-state distribution is concentrated on disjoint sets for distinct
A values due, specifically, to the factor κ(N ′−1) in the integrand. Our goal is to introduce a
counterterm that effectively cancels the factor κ(N ′−1), and this can be accomplished, loosely
speaking, by choosing an idealized example of a pseudofree model, about which to expand,
with a ground-state distribution such that

�I(φ)2 ∝ κ−(N ′−1) e−A�′
kφ

2
k as

. (13)

Observe that the use of the distribution �I(φ)2 in place of �G(φ)2 above leads to a series
analogous to (12) that is term-by-term finite.

Naturally, there are many ways to choose a pseudofree ground state that has the desired
property expressed in (13), and different models will require different versions. In fact, (13)
has been the starting point to rapidly solve ultralocal models, which are nonrenormalizable
quantum field theories without spatial derivatives having a vast symmetry that has been crucial
to finding their solution previously [6]. But ultralocal models are not the subject of this paper.
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To deal with relativistic models, we focus on a ground state for the pseudofree (pf) model
given by

�pf(φ) = K
e−�′

k,lφkAk−lφla
2s /2h̄−W(φa(s−1)/2/h̄1/2)/2

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/4N ′ ; (14)

we discuss the constants Ak−l and Jk,l and the function W below. This form for the ground
state is ensured if we define the pseudofree theory—the theory about which a perturbation
expansion is to take place—as

Spf(h) = Mpf

∫
exp

[
Z−1/2�khkφka

n/h̄ − 1

2
�k�k∗(φk∗ − φk)

2an−2/h̄

− 1

2
h̄�kFk(φ)an

]
�k dφk (15)

and choose Fk(φ) to yield the denominator in (14). To make this connection, we appeal to the
associated lattice Hamiltonian for the pseudofree model:

Hpf = −1

2
h̄2a−s�′

k

∂2

∂φ2
k

+
1

2
�′

k�
′
k∗(φk∗ − φk)

2as−2 +
1

2
h̄2�′

kFk(φ)as − E0, (16)

and from this association we find that

Fk(φ) ≡ 1

4

(
N ′ − 1

N ′

)2

a−2s�′
r,t

Jr,kJt,kφ
2
k[

�′
lJr,lφ

2
l

][
�′

mJt,mφ2
m

]

− 1

2

(
N ′ − 1

N ′

)
a−2s�′

t

Jt,k[
�′

mJt,mφ2
m

] +

(
N ′ − 1

N ′

)
a−2s�′

t

J 2
t,kφ

2
k[

�′
mJt,mφ2

m

]2 . (17)

Irrespective of the choice for Jk,l , we note that (i) the denominator in the expression for the
pseudofree ground state specifically leads to the counterterm in the Hamiltonian; (ii) the term
in the exponent quadratic in φ is chosen to yield the spatial-gradient term in the Hamiltonian
(and possibly part of E0), and this requires that Ak−l = O(a−(s+1)); and (iii) the unspecified
term W ensures that no additional terms (other than the rest of E0) appear in the Hamiltonian.
The functional form of the argument in W follows from the manner in which both h̄ and
a appear in the Hamiltonian. In addition, note that the quadratic and denominator terms
in �pf(φ) are correct for very large and very small field values, respectively; hence, W is
relatively most effective for intermediate field values.

The choice Jk,l = δk,l leads to a local covariant potential for which Fk(φ) ∝ 1/φ2
k , but

it also gives rise to a ground-state distribution with incipient normalization divergences at
φk = 0, for each k, as N ′ → ∞. This behavior is appropriate for an ultralocal model, but
not for a relativistic model. To overcome that feature, we choose the factors Jk,l to provide a
minimally regularized, lattice-symmetric, local spatial averaging in the form

Jk,l ≡ 1

2s + 1
δk,l∈{k∪knn}, (18)

where δk,l is a Kronecker delta. This notation means that an equal weight of 1/(2s + 1)

is given to the 2s + 1 points in the set composed of k and its 2s nearest neighbors in the
spatial sense only; Jk,l = 0 for all other points in that spatial slice. (Specifically, we define
Jk,l = 1/(2s + 1) for the points l = k = (k0, k1, k2, . . . , ks), l = (k0, k1 ± 1, k2, . . . , ks),

l = (k0, k1, k2 ± 1, . . . , ks), . . . , l = (k0, k1, k2, . . . , ks ± 1).) This definition implies that
�′

lJk,l = 1.
In the continuum limit, it is important to observe that the form of the counterterm given

by (17) leads to a local covariant potential, albeit an unconventional one.
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The continuum limit, and term-by-term finiteness of a perturbation analysis

Before focusing on the limit a → 0 and L → ∞, we note several important facts about
ground-state averages of the direction field variables {ηk}. First, we assume that such averages
have two important symmetries: (i) averages of an odd number of ηk variables vanish, i.e.

〈ηk1 · · · ηk2p+1〉 = 0, (19)

and (ii) such averages are invariant under any spacetime translation, i.e.

〈ηk1 · · · ηk2p
〉 = 〈ηk1+l · · · ηk2p+l〉 (20)

for any l ∈ Z
n due to a similar translational invariance of the lattice Hamiltonian. Second,

we note that for any ground-state distribution, it is necessary that
〈
η2

k

〉 = 1/N ′ for the simple
reason that �′

kη
2
k = 1. Hence, |〈ηkηl〉| � 1/N ′ as follows from the Schwarz inequality. Since〈[

�′
kη

2
k

]2〉 = 1, it follows that
〈
η2

kη
2
l

〉 = O(1/N ′2). Similar arguments show that for any
ground-state distribution

〈ηk1 · · · ηk2p
〉 = O(1/N ′p), (21)

which will be useful in the following.
In discussing the moments below, we remind the reader (see the discussion regarding (6))

that if sharp time averages are made finite, then the corresponding spacetime averages in the
distribution determined by the lattice action will also be finite.

Field strength renormalization. For {hk} a suitable spatial test sequence, we insist that
expressions such as∫

Z−p[�′
khkφka

s]2p�pf(φ)2�′
k dφk (22)

are finite in the continuum limit. Due to the intermediate field relevance of the factor W in the
pseudofree ground state, an approximate evaluation of the integral (22) will be adequate for
our purposes. Thus, we are led to consider

K

∫
Z−p[�′

khkφka
s]2p e−�′

k,lφkAk−lφla
2s /h̄−W

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ �
′
k dφk

 2K0

∫
Z−pκ2p

[
�′

khkηka
s
]2p

× e−κ2�′
k,lηkAk−lηla

2s /h̄

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′ dκδ
(
1 − �′

kη
2
k

)
�′

k dηk, (23)

where K0 is the normalization factor when W is dropped. Our goal is to use this integral to
determine a value for the field strength renormalization constant Z. To estimate this integral,
we first replace two factors with η variables by their appropriate averages. In particular, the
quadratic expression in the exponent is estimated by

κ2�′
k,lηkAk−lηla

2s  κ2�′
k,lN

′−1Ak−la
2s ∝ κ2N ′a2sa−(s+1), (24)

and the expression in the integrand is estimated by

[�′
khkηka

s]2p  N ′−p[�′
khka

s]2p. (25)

The integral over κ is then estimated by first rescaling the variable κ2 → κ2/(N ′as−1/h̄),
which then leads to an overall integral estimate proportional to

Z−p[N ′as−1]−pN ′−p[�′
khka

s]2p; (26)

5
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at this point, all factors of a are now outside the integral. For this result to be meaningful in the
continuum limit, we are led to choose Z = N ′−2a−(s−1). However, Z must be dimensionless,
so we introduce a fixed positive quantity q with dimensions of an inverse length, which allows
us to set

Z = N ′−2(qa)−(s−1). (27)

Mass and coupling constant renormalization. A power series expansion of the mass and
coupling constant terms in the full spacetime distribution leads to two kind of moments given
by 〈[

m2
0�kφ

2
k a

n
]p〉

,
〈[
λ0�kφ

4
k a

n
]p〉

, (28)

for p � 1, which we treat together as part of the larger family governed by
〈[
g0,r�kφ

2r
k an

]p〉
for integral r � 1. We deal with these spacetime moments by considering analogous sharp
time moments given by

K

∫ [
g0,r�

′
kφ

2r
k as

]p e−�′
k,lφkAk−lφla

2s /h̄−W

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ �
′
k dφk

 2K0

∫
g

p

0,rκ
2rp

[
�′

kη
2r
k as

]p

× e−κ2�′
k,lηkAk−lηla

2s /h̄

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′ dκδ
(
1 − �′

kη
2
k

)
�′

k dηk. (29)

The quadratic exponent is again estimated as

κ2�′
k,lηkAk−lηla

2s ∝ κ2N ′a2sa−(s+1), (30)

while the integrand factor[
�′

kη
2r
k

]p  N ′pN ′−rp. (31)

The same transformation of variables used above precedes the integral over κ , and the result
is an integral, no longer depending on a, that is proportional to

g
p

0,rN
′−(r−1)pasp/N ′rpa(s−1)rp. (32)

To have an acceptable continuum limit, it suffices that

g0,r = N ′(2r−1)(qa)(s−1)r−sgr , (33)

where gr may be called the physical coupling factor. Moreover, it is noteworthy that
Zrg0,r = [N ′(qa)s]−1gr , for all values of r, which for a finite spatial volume V ′ = N ′as leads
to a finite nonzero result for Zrg0,r . It should not be a surprise that there are no divergences
for all such interactions because the source of all divergences has been neutralized!

We may specialize the general result established above to the two cases of interest to us.
Namely, when r = 1 this last relation implies that m2

0 = N ′(qa)−1m2, while when r = 2, it
follows that λ0 = N ′3(qa)s−2λ. In these cases it also follows that Zm2

0 = [N ′(qa)s]−1m2 and
Z2λ0 = [N ′(qa)s]−1λ, which for a finite spatial volume V ′ = N ′as leads to a finite nonzero
result for Zm2

0 and Z2λ0, respectively.

Conclusion

For scalar nonrenormalizable quantum field models, we have shown that the choice of an
unconventional counterterm, but one that is proportional to h̄2 and therefore nonclassical,
leads to a formulation for which a perturbation analysis for both the mass term and the
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nonlinear interaction term of the full spacetime averages, expanded about the appropriate
pseudofree model, are term-by-term finite. Thanks to the unconventional counterterm, it
is noteworthy that additive renormalization has been everywhere replaced by multiplicative
renormalization. A natural question to ask is how the cancellation of the factor κ(N ′−1) in (10)
relates to the classical hard core observation regarding fields such as φsingular given following
(1); our answer is to observe that the existence of the classical hard core tends to suggest that
there may be a hard core in the quantum theory as well, but as in all functional integrals over
fields, the set of fields in the classical domain makes a contribution in the quantum theory of
measure zero.

Alternative insight into such models may possibly be obtained by Monte Carlo studies of
the full, nonperturbative model including the special counterterm; for a preliminary discussion
of such an approach, see [7].
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